
Filthy Rich Portlets with
ICEfaces and Liferay

Neil Griffin
Software Architect

Liferay, Inc.

Copyright© 2008
by Liferay, Inc.

and ICEsoft Technologies, Inc.

Overview

•  Portals and Portlets
•  Liferay Portal
•  JSF Portlets
•  ICEfaces Portlets
•  Standard Inter-Portlet Communication
•  Ajax Push Inter-Portlet Communication

What is a Portal?

•  A portal is a framework for creating
websites that aggregate different types of
content and applications

•  Portals are typically referred to as portlet
containers

What is a Portlet?

•  A portlet is a region of a portal page that
contains content and/or application
functionality

•  With respect to Java EE, a portlet is
deployed as Web Application Archive
(WAR) and requires a descriptor named
portlet.xml

Portal Pages

•  Like any website, portal sites are made up
of pages

•  Portal pages contain one or more portlets
•  Portlets can be combined on a portal page

to create a composite application

Portal Page Illustration

Portlet A
Portlet B

Portlet C

Portal Page

Portlet Standards

•  JSR-168 (Portlet 1.0)
– Released on 10/27/2003

•  JSR-286 (Portlet 2.0)
– Released on 6/12/2008

Liferay Portal

•  Liferay Portal is an open source portlet
container built with Java technology

•  Liferay portlets can be built with a variety
of technologies, including:

– Java
– JSP
– JSF

– Struts
– Tapestry
– Javascript

– PHP
– Python
– Ruby

Liferay Portal Page Screenshot

Portal
Page Links

Portlets

Dock

Liferay Portal Features

•  Standards compliant portlet container
•  Ships with 60+ out-of-the-box portlets
•  Built-in Content Management System

(CMS)
•  Built-in social networking portlets:

– Friends, Message Forums, Shared Calendar,
Wiki, Blogs

•  Extensible with custom portlets

JSF Portlets

•  JSR-127 (JSF 1.1) specification was
designed with JSR-168 (Portlet 1.0) in
mind

•  Because of this, JSF web applications can
typically run as portlets with little to no
modification

•  Liferay was one of the first portal vendors
to provide support for JSF portlets back in
May, 2005

JSF Portlet Bridge

•  JSF webapps require a bridge in order to
be deployed as portlets

•  Liferay currently supports two bridges:
–  Sun OpenPortal JSF-Portlet Bridge: jsf-portlet.jar

•  Sun RI JSF 1.1 and 1.2

–  MyFacesGenericPortlet: myfaces-impl.jar
•  MyFaces RI 1.1 only

•  JSR-301 is defining a standard portlet
bridge API for JSF portlets

JSF Portlet Bridge (Cont.)
<!-- Sample fragment of markup that shows how to specify the -->

<!-- Sun OpenPortal JSF Portlet Bridge in portlet.xml -->
<portlet>

 <portlet-name>sample_jsf</portlet-name>
 <portlet-class>com.sun.faces.portlet.FacesPortlet</portlet-class>
 <init-param>

 <name>com.sun.faces.portlet.INIT_VIEW</name>
 <value>/xhtml/applicantForm.xhtml</value>
 </init-param>
 <init-param>
 <name>com.sun.faces.portlet.INIT_EDIT</name>
 <value>/xhtml/edit.xhtml</value>

 </init-param>
 <init-param>
 <name>com.sun.faces.portlet.INIT_HELP</name>
 <value>/xhtml/help.xhtml</value>
 </init-param>
 ...

</portlet>

Portlet Form Submission

•  Although portal pages can contain multiple
portlets, only one portlet at a time can
participate in form submission
– Form submission in Portlet A causes Portlet B,

Portlet C, … to re-render themselves

•  Portlet form submission can cause a
disruptive end-user experience

Demo #1 – JSF Portlet

JSP
JavaScript

Portlet JSF
Portlet

Submitting the JSF portlet form
causes an HTTP POST and

forces the other portlet to re-
render itself

Click

ICEfaces
to the Rescue!

ICEfaces

•  ICEfaces is an open source Ajax
extension to JSF
– Ajax application framework
– Robust suite of Ajax-enabled JSF UI

components

•  ICEfaces enables Java EE developers to
easily create and deploy thin-client rich
Internet applications (RIA)

ICEfaces Portlets

•  Liferay and ICEsoft have a partnership in
place in order to support ICEfaces
portlets

ICEfaces Portlets (Cont.)

•  Portlets built with ICEfaces never
perform an HTTP post – instead, form
submission is done via Ajax

•  Because of this feature, portlets built with
ICEfaces don’t disturb other portlets
on the same portal page

•  The end result is a rich UI that does not
disrupt the end-user experience

ICEfaces Portlet Bridge
<!-- Sample fragment of markup that shows how to specify the -->

<!-- ICEfaces Portlet Bridge in the portlet.xml file -->
<portlet>

 <portlet-name>sample_icefaces</portlet-name>

 <portlet-class>com.icesoft.faces.webapp.http.portlet.MainPortlet</portlet-class>
 <init-param>
 <name>com.icesoft.faces.VIEW</name>
 <value>/xhtml/applicantForm.iface</value>

 </init-param>
 <init-param>
 <name>com.icesoft.faces.EDIT</name>
 <value>/xhtml/edit.iface</value>

 </init-param>
 <init-param>
 <name>com.icesoft.faces.HELP</name>
 <value>/xhtml/help.iface</value>
 </init-param>
 ...

</portlet>

ICEfaces
Extended Request Scope

•  In a normal JSF webapp/portlet, request
scope is very short-lived

•  ICEfaces Extended Request Scope is
longer in duration:
– Starts when a JSF view is first requested
– Terminates when any of the following occur:

•  Navigation to a different JSF view
•  ICEfaces Ajax connection timeout
•  Browser is dismissed by the user

Ext. Request Scope (Cont.)

•  ICEfaces Extended Request Scope is very
similar to JSF 2.0 “View Scope”

•  The scope is also a great match for
portlets, particularly those that do not
participate in navigation from one JSF
view to another

ICEfaces Partial Submit

•  When the user presses the tab key in
order to move from one field to another,
the onblur JavaScript event is triggered

•  When this occurs on an ICEfaces
component with
partialSubmit=“true” the form is
submitted via Ajax

Partial Submit (Cont.)

•  During partial submit:
– ICEfaces will invoke the JSF lifecycle
– Form submission is “full” in the sense that all

editable fields in the form are serialized and
submitted

– Form submission is “partial” in the sense that
the form is only partially validated,
meaning that only fields that have been
visited by the user will undergo validation

Partial Submit
and the JSF Lifecycle

Restore
View

Apply
Request
Values

Process
Events

Process
Validations

Process
Events

Update
Model
Values

Process
Events

Invoke
Application

Process
Events

Render
Response

Faces
Request

Failure / Conversion Errors

Validation/Conversion Errors

Faces
Response

Response
Complete

Response
Complete

Response
Complete

HTTP
GET

Response
Complete

Apply
Request
Values

Process
Validations

Success

Failure

Only 
ac(onListeners 
fire here during 
par-al submit, 
and not ac-ons 

Only visited fields 
are validated 
here during 
par-al submit 

Direct2DOM Rendering

•  Standard JSF components render markup
directly to the response

•  ICEfaces provides a JSF render-kit that
causes components to render themselves
into a server-side DOM

Direct2DOM (Cont.)

•  After the “Render Response” phase of the
JSF lifecycle, ICEfaces will determine the
differences between the server side DOM
and the DOM in the browser

•  ICEfaces will then use its Ajax Bridge to
supply the browser with incremental DOM
updates

•  This technique insulates developers from
the task of writing JavaScript

ICEfaces
Direct2DOM Rendering

DOM
(Server)

DOM
(Client)

Incremental DOM Updates

Ajax Bridge

Direct-to-DOM insulates Java developers from the task of writing JavaScript…

ice:portlet

•  Portlet containers like Liferay Portal control
the output of the following elements:
<html> ... </html>

<head> ... </head>
<body> ... </body>

•  In order to ensure that ICEfaces portlets
do not interfere with these tags during
navigation from one JSF view to another,
the ice:portlet tag must be used

ice:portlet (cont.)
<!-- Sample fragment of markup that shows how to -->

<!-- surround the ice:form with ice:portlet -->
<f:view
 xmlns:f=http://java.sun.com/jsf/core
 xmlns:ice="http://www.icesoft.com/icefaces/component">
 <ice:portlet>
 <ice:form>
 ...
 </ice:form>
 </ice:portlet>

</f:view>

Demo #2 – ICEfaces Portlet

JavaScript onblur event invokes
partial submit on visited fields

Direct2DOM incremental page
updates provide client-side

validation for free

File upload progress indicator
driven by ICEfaces Ajax Push

Other portlets on the page 
remain undisturbed 

Portlet 2.0 and Ajax

•  Portlet 2.0 provides the ability to issue
XmlHttpRequest calls that go through the
portlet container

•  Benefit:
–  Provides complete access to portlet state

•  Drawbacks:
–  Developer must manually update the DOM
–  No support for Ajax Push
–  Does not support Ajax-based Inter-Portlet

Communication

Portlet 2.0 and Ajax

Portlet A

Portlet Container WAR

Servlet Container / App Server

Portlet A
WAR

Portlet B
WAR

Portlet C
WAR

Servlet

XmlH%pRequest  Async Response 

Inter-Portlet Communication

•  Inter-Portlet Communication (IPC) is a
technique for sharing data between
portlets and building composite
applications
–  Enables building of composite applications by aggregating

different portlets that share data
–  User interactions in Portlet A can affect the rendered markup in

Portlet B, Portlet C, …

•  IPC can be achieved by client-side and
server-side techniques

IPC Illustration

Portlet A
Portlet B

Portlet C
Button / Link

Click

Updated
Markup

Updated
Markup

Client-Side IPC

•  Client-side IPC can be achieved with
JavaScript
– Liferay provides an event system based on the

jQuery JavaScript API
– Can be fortified with Ajax calls in order to

acquire data that is not-yet in the browser’s
DOM

Client-Side IPC (Cont.)

•  Benefits:
– Simple publisher/subscript event mechanism
– Rich user experience as Portlet A triggers

DOM update in Portlet B, Portlet C, …
– Network activity only takes place if Ajax is

used to acquire data
– No full page submit

Client-Side IPC (Cont.)

•  Drawbacks:
–  Only one user (and one web browser) participates in

IPC
–  Have to write JavaScript for Ajax interactions
–  Have to write JavaScript to update DOM in affected

portlets
–  Potential risk of business logic being exposed on the

client
–  Portlet development is partly in JavaScript, partly in

Java, which can be difficult to maintain sometimes

Server-Side IPC
Public Render Parameters

•  Portlet 2.0 defines the ability for portlets
to set public/shared parameter names in
the URL controlled by the portal

Portlet A Portlet B

Button / Link

articleId=1234

Click

http://server/portalpage?articleId=1234

Updated
Article

Content

Public Render
Parameters (Cont.)

•  Benefits:
– Easy to implement

•  Drawbacks:
– Requires full page submit
– Only practical for passing small amounts of

data, such as the “id” of a record in the
database

– Passing request parameters from page to
page is not very JSF-ish

Server-Side IPC
Events

•  Portlet 2.0 provides the publish/subscribe
method for portlets to communicate via
events

•  Benefits:
–  Portal acts as broker and distributes events and payload (data) to portlets

•  Drawbacks:
–  Can be challenging to implement
–  Not yet supported by JSF portlet bridges
–  Requires full page submit
–  Payload must be serialized by the portal when events are passed to listeners in

other classloaders

Server-Side IPC
JSF Session Scope

•  Trying JSF session scope for IPC might
be the most natural thing for a JSF
developer to try, but it doesn’t work!

•  Why not? Because the Portlet API defines
session scope in two ways:
–  PortletSession.PORTLET_SCOPE: Data cannot be accessed by

other portlets
–  PortletSession.APPLICATION_SOPE: Data can be accessed by

other portlets

And…

Server-Side IPC
JSF Session Scope (Cont.)

•  JSF portlet bridges (including the ICEfaces
bridge) default JSF session scope to be
PortletSession.PORTLET_SCOPE

•  Consequently, JSF session scope doesn’t
work for IPC 

Server-Side IPC
Shared Portlet Session Scope

•  JSF portlets can take matters into their
own hands and store data for IPC in
PortletSession.APPLICATION_SCOPE

•  Benefit:
– Sharing data in a stateful user session

managed by portal

•  Drawback:
– Can’t share data acrosss WARs

JSF Application Scope

•  Storing shared data in JSF application
scope is another choice for IPC

•  Benefit:
–  Not restricted to a single user – perfect for a Chat

portlet

•  Drawback:
–  Can’t use the stateful features of the session to rely

on memory getting freed up when the session is
invalidated

–  Can’t share memory between different portlet WARs

Server-Side IPC
Sharing Data Between WARs

•  Liferay Portal normally lives in the ROOT
context of the servlet container

•  Liferay provides the PortalClassInvoker
utility that can provide access to static
data that lives in the ROOT context

•  For more information see blog entry on
sharing data between portlets in
different .WARs

http://www.liferay.com/web/ngriffin/blog/-/blogs/sharing-data-between-portlets?_33_redirect=/web/ngriffin/blog

Demo #3 – Standard JSF IPC

User must submit the form
(HTTP POST) in order to

inform the Bookings portlet
of a new selection

Other portlets on the page
are disturbed

User must submit the form
(HTTP POST) in order to
inform the Customers

portlet of a name change

ICEfaces Ajax Push

•  ICEsoft pioneered Ajax Push, and made
it part of the design of ICEfaces from the
very beginning
– Sometimes referred to as “Comet” or “Reverse

Ajax”

•  ICEfaces webapps/portlets can use Ajax
Push to trigger server-initiated
rendering

Ajax Push Illustrated

Server
Event

Partial Submit

User
Event

Ajax Push

Incremental
DOM

Updates

Incremental
DOM

Updates

App Sever

Ajax Push IPC
•  ICEfaces Ajax Push is a compelling

technique for IPC
•  Benefits:

–  Easy to implement
–  Rich UI experience for the end user
–  Behaves like client-side IPC, but has none of the drawbacks!
–  Other portlets on the page are undisturbed
–  Not just inter-portlet, but inter-portlet, inter-user

communication!

•  Drawbacks:
–  None!

Ajax Push for IPC

Portlet A
Portlet B

Portlet C

Incremental
DOM

Updates

User
Event

Incremental
DOM

Updates

Demo #4 – Ajax Push IPC
Partial submit

triggers Ajax Push,
informing the

Bookings portlet of a
new customer

selection

Other portlets on the
page are

undisturbed

Partial submit
triggers Ajax Push,

informing the
Customers portlet of

a name change

onclick

onblur

Demo #5

•  Shared data (chat
log) stored in JSF
application scope

•  Different portal
users can chat with
each other

Liferay + ICEfaces
Deployment Options

Servlet Containers:
•  Apache Tomcat
•  Webtide Jetty

Database Servers:
•  MySQL®
•  Oracle®
•  Microsoft® SQL Server™
•  IBM DB2™
•  Sybase®
•  SAP®
•  JavaDB (Apache Derby)

Application Servers:
•  Sun GlassFish™ AS
•  JBoss® AS
•  BEA®/Oracle® WebLogic AS
•  Oracle® AS
•  IBM WebSphere® AS

Operating Systems:
•  Windows®
•  Linux®
•  Sun Solaris®
•  IBM AIX™

Summary

•  ICEfaces portlets provide a rich UI that
does not disturb other portlets on the
same portal page

•  ICEfaces Ajax Push is a compelling
technique for IPC within Liferay Portal

Questions?

•  Thank you for attending!

Copyright Notices:
•  Liferay is a registered trademark of Liferay, Inc.
•  ICEfaces is a trademark of ICEsoft Technologies, Inc.
•  Sun, Sun Microsystems, the Sun logo, Solaris, GlassFish, Java, Java EE, and JavaServer are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and in other countries
•  Linux is a registered trademark of Linux Torvalds
•  Microsoft, Windows, and SQL Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.
•  AIX and DB2 are trademarks and WebSphere is a registered trademark of IBM Corp.
•  Oracle is a registered trademark of Oracle Corporation
•  WebLogic is a registered trademark of BEA Systems, Inc
•  JBoss is a registered trademark of Red Hat Middleware, LLC
•  MySQL is a registered trademark of MySQL AB
•  Sybase is a registered trademark of Sybase, Inc.
•  SAP is a registered trademark of SAP AG in Germany and in several other countries
•  Google and the Google logos are trademarks of Google, Inc.
•  Mozilla and FireFox are registered trademarks of Mozilla Corporation
•  Safari is a registered trademark of Apple, Inc.
•  All other trademarks mentioned herein are the property of their respective owners

